The Research of Vapor Phase Front Migration Rules in Steam Assisted Gravity Drainage
DOI:
https://doi.org/10.21152/1750-9548.14.4.359Abstract
The degree of steam overlay and descriptions of the migration rules for vapor front is considered one of the greatest challenges to research the seepage laws of steam assisted gravity drainage. In order to surmount these challenges, the theory of percolation mechanics are introduced, combined with the well group structure of steam assisted gravity drainage, we do workings such as establishing the mathematical model of the pressure field, applying the steam overlap theory and simplifying the steam overlap coefficient, adopting the technology of database and mapping to display the trends of vapor front intuitively. At last, combined with production factor and reservoir thickness, we analyze the swept volume of steam and the influence rules of the vapor front migration. Understanding the achievements will provide a scientific basis to the improvement of steam’s sweep volume in symmetry elements, displaying the working degree of reservoirs intuitively as well as the efficient development of steam assisted gravity drainage.
References
Hashemi-Kiasari, H.; Hemmati-Sarapardeh, A.; Mighani, S.; Mohammadi, A. H.; Sedaee-Sola, B. Effect of operational parameters on SAGD performance in a dip heterogeneous fractured reservoir. Fuel, 2014, 122,82-93, DOI: https://doi.org/10.1016/j.fuel.2013.12.057.
Yuan, A.; Ma, H.; Yang, X.; Zheng, X. Research into steam overlay pattern and countermeasures for block Du84 in Liaohe oilfield. In International Oil and Gas Conference and Exhibition in China. Society of Petroleum Engineers. 2010. DOI: https://doi.org/10.2118/130947-MS.
Liang, C.; Wang, C.; Sun, Q.; He, C. Study of Potential Distribution Laws in Three-Dimensional Space for Oil Field Exploitation Using Steam-Assisted Gravity Drainage (SAGD) Technology and a Compound Well Group. Chemistry & Technology of Fuels & Oils, 2017, 53,399-411, DOI: https://doi.org/10.1007/s10553-017-0817-3.
Ali, F.; Hamed, A.; Nawi, D. M.; Hussin, Y. M.; Soheil, N. Impact of reservoir heterogeneity on steam assisted gravity drainage in heavy oil fractured reservoirs. Energy Exploration & Exploitation, 2012, 30, 553-566, DOI: http://dx.doi.org/10.1260/0144-5987.30.4.553.
Gittins, S.; Gupta, S. C.; Zaman, M. Simulation of Noncondensable Gases in SAGD Steam Chambers[J]. Journal of Canadian Petroleum Technology, 2011, 52,20-29, DOI: https://doi.org/10.2118/149503-MS.
Mandl, G.; Volek, C. W. Heat and mass transport in steam-drive processes. Society of Petroleum Engineers Journal, 1967, 9, 59-79, DOI: https://doi.org/10.2118/2049-PA.
Myhill, N. A.; Stegemeier, G. L. Steam drive correlation and prediction. Journal of Petroleum Technology, 1978,30, 173-182, DOI: https://doi.org/10.2118/5572-PA.
Dong, J.; He, Z.; Ming, D.; Zhang, C. Study of heat transfer by thermal expansion of connate water ahead of a steam chamber edge in the steam-assisted-gravity-drainage process. Fuel, 2015, 52,592-601, DOI: https://doi.org/10.1016/j.fuel.2015.02.065.
Akbilgic, O.; Zhu, D.; Gates, I. D.; Bergerson, J. A. Prediction of steam-assisted gravity drainage steam to oil ratio from reservoir characteristics. Energy, 2015,93, 1663-1670, DOI: https://doi.org/10.1016/j.energy.2015.09.029.
Liu, H.; Cheng, L.; Huang, S.; Jia, P.; Chen, M. Evolution characteristics of sagd steam chamber and its impacts on heavy oil production and heat consumption. International Journal of Heat & Mass Transfer, 2018,121, 579-596, DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.038.
Zhu, Z.; Liu, Y.; Liu, C.; Wang, Y.; Kovscek, A. R. In-Situ Combustion Frontal Stability Analysis. Presented at the SPE Western Regional Meeting, 2019. DOI: https://doi.org/10.2118/195318-MS.
Pang, Z., Jiang, Y., Wang, B., Cheng, G., Yu, X. Experiments and analysis on development methods for horizontal well cyclic steam stimulation in heavy oil reservoir with edge water. Journal of Petroleum Science and Engineering, 2020,188, 106948. DOI:https://doi.org/10.1016/j.petrol.2020.106948.
Pang, Z.; Lyu, X.; Zhang, F.; Wu, T.; Gao, Z.; Geng, Z.; Luo, C. The macroscopic and microscopic analysis on the performance of steam foams during thermal recovery in heavy oil reservoirs. Fuel, 2018,233, 166-176. DOI: https://doi.org/10.1016/j.fuel.2018.06.048.
Shargatov, V. A. Instability of a liquid–vapor phase transition front in inhomogeneous wettable porous media. Fluid Dynamics, 2017, 52, 146-157. DOI: https://doi.org/10.1134/S0015462817010148.
Huang, S.; Yang, L.; Xia, Y.; Du, M.; Yang, Y. An experimental and numerical study of a steam chamber and production characteristics of SAGD considering multiple barrier layers. Journal of Petroleum Science and Engineering, 2019, 180, 716-726. DOI: https://doi.org/10.1016/j.petrol.2019.05.062.
Mozaffari, S.; Nikookar, M.; Ehsani, M.R.; Sahranavard, L.; Roayaie, E.; Mohammadi, A.H. Numerical modeling of steam injection in heavy oil reservoirs. Fuel, 2013, 112, 185-192. DOI: https://doi.org/10.1016/j.fuel.2013.04.084.
Nabilou, A.; Carvalho, M.T.; Dias, N.; Brogueira, P.; Salamunićcar, G.; Loncaric, S.; Gonçalves, M.C. Study of the parameters of Steam Assisted Gravity Drainage (SAGD) method for enhanced oil recovery in a heavy oil fractured carbonate reservoir. American Journal of Engineering and Applied Sciences, 2016,9, 647-658. DOI: https://doi.org/10.3844/ajeassp.2016.647.658.
Gates, I.D.; Chakrabarty N. Optimization of Steam-Assisted Gravity Drainage (SAGD) in ideal Mcmurray reservoir. Journal of Canadian Petroleum Technology, 2006, 45: 54-62. DOI: https://doi.org/10.2118/06-09-05.
Al-Murayri, M.T.; Maini, B.B.; Harding, T.G.; Oskouei, J. Multicomponent solvent co-injection with steam in heavy and extra-heavy oil reservoirs. Energy & Fuels, 2016, 30, 2604-2616. DOI: https://doi.org/10.1021/acs.energyfuels.5b02774.
Sharma, J.; Gates, I. D. Interfacial Stability of In-Situ Bitumen Thermal Solvent Recovery Processes. SPE Journal, March 2011, 16, 55– 64 DOI: https://doi.org/ 10.2118/130050-PA.
Fadaei, H.; Debenest, G.; Kamp, A.; Quintard, M.; Renard, G. How the In-Situ Combustion Process Works in a Fractured System: 2D Core-and Block-Scale Simulation. SPE Reservoir Evaluation & Engineering ,2010, 13, 118– 130, DOI: https://doi.org/ 10.2118/117645-PA.
Alamatsaz, A.; Moore, R.; Mehta, S.; Ursenbach, M. Experimental investigation of in-situ combustion at low air fluxes. Journal of Canadian Petroleum Technology, 2011, 50, 48– 67, DOI: https://doi.org/10.2118/144517-PA.
Wu, Z.; Vasantharajan, S.; El-Mandouh, M.; Suryanarayana, P.V. Inflow performance of a cyclic-steam-stimulated horizontal well under the influence of gravity drainage. SPE Journal, 2011,16, 494-502. DOI: https://doi.org/10.2118/127518-PA.
Wang, C.; Liu, H., Wang, J.; Wu, Z.; Wang, L. Three-dimensional physical simulation experiment study on carbon dioxide and dissolver assisted horizontal well steam stimulation in super heavy oil reservoirs. Journal of Petroleum Exploration and Production Technology, 2016, 6, 825–834. DOI: https://doi.org/10.1007/s13202-016-0234-x.
Zargar, Z.; Ali, S. Analytical modelling of steam chamber rise stage of Steam-Assisted Gravity Drainage (SAGD) process. Fuel, 2018, 233, 732–742. DOI: https://doi.org/10.1016/j.fuel.2018.06.106.
Le Ravalec, M.; Morlot, C.; Marmier, R.; Foulon, D. Heterogeneity Impact on SAGD Process Performance in Mobile Heavy Oil Reservoirs. Oil & Gas Science and Technology, 2009, 64, 469–476. DOI: https://doi.org/10.2516/ogst/2009014.
Nguyen, T.; Dang, T.; Bae, W.; Chen, Z. Effects of Reservoir Heterogeneities, Thief Zone, and Fracture Systems on the Fast-SAGD Process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36, 1710–1725. DOI: https://doi.org/10.1080/15567036.2010.544007.
Li, P.; Zhang, Y.; Sun, X.; Chen, H.; Liu, Y. A Numerical Model for Investigating the Steam Conformance along the Dual-String Horizontal Wells in SAGD Operations. Energies, 2020, 13, 3981–4017. DOI: https://doi.org/10.3390/en13153981.
Huang, S.; Liu, H.; Cheng, L.; Yang, Y.; Wei, S. The relationship of liquid level and subcool between injector and producer during SAGD process. Journal of Petroleum Science and Engineering, 2017, 153, 364–371. DOI: https://doi.org/10.1016/j.petrol.2017.03.025.
Shaolei, W.; Linsong, C.; Wenjun, H.; Shijun, H.; Shuai, L. Prediction for steam chamber development and production performance in SAGD process. Journal of Natural Gas Science and Engineering, 2014, 19, 303–310. DOI: https://doi.org/10.1016/j.jngse.2014.05.021.
Chen, X.; Nie, R.; Jia, Y.; Sang, L. The Application of Stefan Problem in Calculating the Lateral Movement of Steam Chamber in SAGD. Mathematical Problems in Engineering, 2015, 2015, 1–11. DOI: https://doi.org/10.1155/2015/372581
Published
How to Cite
Issue
Section
Copyright (c) 2020 Q Sun, H Li, Y Xu, X Zhao

This work is licensed under a Creative Commons Attribution 4.0 International License.