Experimental Study on Precipitation Regularity of Asphaltene in Underground Water-Sealed Caverns under Varying Temperature and Pressure Conditions

Authors

  • J Tan
  • L Zhou
  • L Wang
  • Q Sun

DOI:

https://doi.org/10.21152/1750-9548.17.4.469

Abstract

Through experimental research, this paper reveals the influence of different storage temperatures and pressures on the amount of asphaltene deposition in Russian ESPO crude oil in underground water-sealed caverns. Based on Stokes' settling theory and the experimental results of asphaltene settling at different temperatures and pressures, the Stokes particle settling calculation formula was optimized for temperature and pressure terms. Finally, a particle settling calculation formula that takes into account different sedimentation systems, different crude oil systems, and different temperature and pressure conditions was achieved. The research results show that the asphaltene precipitation of the crude oil system is more affected by temperature than pressure at 10°C-30°C and 0.12MPa-0.28MPa. The precipitation amount decreases with increasing temperature, and the precipitation amount does not show an obvious correlation trend with pressure changes. The research results can provide important theoretical and practical basis for inhibiting the sedimentation loss of long-term storage of crude oil in underground water-sealed caverns.

References

S. M. R. Mousavi, S. Jafari, M. Schaffie, and S. Norouzi-Apourvari, 'Experimental study and modeling permeability damage in porous media due to asphaltene deposition', J. Pet. Sci. Eng., vol. 193, p. 107396, Oct. 2020. https://doi.org/10.1016/j.petrol.2020.107396

S. Alimohammadi, S. Zendehboudi, and L. James, 'A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips', Fuel, vol. 252, pp. 753-791, Sep. 2019. https://doi.org/10.1016/j.fuel.2019.03.016

A. Abedini, S. Ashoori, F. Torabi, Y. Saki, and N. Dinarvand, 'Mechanism of the reversibility of asphaltene precipitation in crude oil', J. Pet. Sci. Eng., vol. 78, no. 2, pp. 316-320, Aug. 2011. https://doi.org/10.1016/j.petrol.2011.07.010

A. Daryasafar, M. Masoudi, S. Kord, and M. Madani, 'Evaluation of different thermodynamic models in predicting asphaltene precipitation: A comparative study', Fluid Phase Equilibria, vol. 514, p. 112557, Jun. 2020. https://doi.org/10.1016/j.fluid.2020.112557

M. Hassanzadeh and M. Abdouss, 'Essential role of structure, architecture, and intermolecular interactions of asphaltene molecules on properties (self-association and surface activity)', Heliyon, vol. 8, no. 12, p. e12170, Dec. 2022. https://doi.org/10.1016/j.heliyon.2022.e12170

J. I. S. Aguiar and C. R. E. Mansur, 'Study of the interaction between asphaltenes and resins by microcalorimetry and ultraviolet-visible spectroscopy', Fuel, vol. 140, pp. 462-469, Jan. 2015. https://doi.org/10.1016/j.fuel.2014.10.011

J. M. Padró, A. Novotny, C. Smal, and M. Cismondi, 'Application and revision of the indirect method for determination of asphaltene precipitation onsets for light and medium oils in Argentina', Upstream Oil Gas Technol., vol. 10, p. 100087, Feb. 2023. https://doi.org/10.1016/j.upstre.2023.100087

B. Shirani, M. Nikazar, A. Naseri, and S. A. Mousavi-Dehghani, 'Modeling of asphaltene precipitation utilizing Association Equation of State', Fuel, vol. 93, pp. 59-66, Mar. 2012. https://doi.org/10.1016/j.fuel.2011.07.007

J. Yuan et al., 'Simulation and computer modeling of asphaltene in different solvents on oil-water interfaces using a molecular dynamic methodology', J. Mol. Graph. Model., vol. 93, p. 107450, Dec. 2019. https://doi.org/10.1016/j.jmgm.2019.107450

I. Mohammed, M. Mahmoud, D. Al Shehri, A. El-Husseiny, and O. Alade, 'Asphaltene precipitation and deposition: A critical review', J. Pet. Sci. Eng., vol. 197, p. 107956, Feb. 2021. https://doi.org/10.1016/j.petrol.2020.107956

R.-Y. Xiong, J.-X. Guo, W. Kiyingi, H.-X. Xu, and X.-P. Wu, 'The deposition of asphaltenes under high-temperature and high-pressure (HTHP) conditions', Pet. Sci., vol. 20, no. 1, pp. 611-618, Feb. 2023. https://doi.org/10.1016/j.petsci.2022.08.026

H. Jiang, Y. Wang, C. Nie, F. Yan, X. Ouyang, and J. Gong, 'Oil Sludge Deposition in Storage Tanks: A Case Study for Russian Crude Oil in Mo-he Station', Appl. Sci., vol. 11, no. 1, p. 321, Dec. 2020. https://doi.org/10.3390/app11010321

C. Jiang, M. Li, and A. C. T. Van Duin, 'Inadequate separation of saturate and monoaromatic hydrocarbons in crude oils and rock extracts by alumina column chromatography', Org. Geochem., vol. 31, no. 7-8, pp. 751-756, Jul. 2000. https://doi.org/10.1016/S0146-6380(00)00078-4

W. Li, W. Wang, H. Mu, W. Li, C. Ye, and J. Feng, 'Analysis of light weight fractions of coal-based crude oil by gas chromatography combined with mass spectroscopy and flame ionization detection', Fuel, vol. 241, pp. 392-401, Apr. 2019. https://doi.org/10.1016/j.fuel.2018.12.045

S. Alizadeh, S. Ta, A. K. Ray, and S. Lakshminarayanan, 'Determination of Density and Viscosity of Crude Oil Samples from FTIR Data using Multivariate Regression, Variable Selection and Classification', IFAC-Pap., vol. 55, no. 7, pp. 845-850, 2022. https://doi.org/10.1016/j.ifacol.2022.07.550

H. Xue et al., 'Asphaltene precipitation trend and controlling its deposition mechanism', Nat. Gas Ind. B, vol. 9, no. 1, pp. 84-95, Feb. 2022. https://doi.org/10.1016/j.ngib.2021.12.001

X. Zhang et al., 'Hydrocarbon yield evolution characteristics and geological significance in temperature-pressure controlled simulation experiment', J. Nat. Gas Geosci., vol. 7, no. 6, pp. 385-400, Dec. 2022. https://doi.org/10.1016/j.jnggs.2022.11.003

J. Meng, C. Kanike, S. G. Sontti, A. Atta, X. Tan, and X. Zhang, 'Asphaltene precipitation under controlled mixing conditions in a microchamber', Chem. Eng. J., vol. 451, p. 138873, Jan. 2023. https://doi.org/10.1016/j.cej.2022.138873

C. Ovalles, E. Rogel, M. E. Moir, and H. Morazan, 'Effect of temperature on the analysis of asphaltenes by the on-column filtration/redissolution method', Fuel, vol. 146, pp. 20-27, Apr. 2015. https://doi.org/10.1016/j.fuel.2014.12.082

S. Fakher, A. Yousef, A. Al-Sakkaf, and S. Eldakar, 'Asphaltene onset pressure measurement and calculation techniques: A review', Petroleum, p. S2405656123000202, Apr. 2023. https://doi.org/10.1016/j.petlm.2023.04.001

I. A. Wiehe, 'Asphaltene Solubility and Fluid Compatibility', Energy Fuels, vol. 26, no. 7, pp. 4004-4016, Jul. 2012. https://doi.org/10.1021/ef300276x

H. Groenzin and O. C. Mullins, 'Asphaltene Molecular Size and Structure', J. Phys. Chem. A, vol. 103, no. 50, pp. 11237-11245, Dec. 1999. https://doi.org/10.1021/jp992609w

K. Bambinek, A. Przyjazny, and G. Boczkaj, 'Compatibility of Crude Oil Blends─Processing Issues Related to Asphaltene Precipitation, Methods of Instability Prediction─A Review', Ind. Eng. Chem. Res., vol. 62, no. 1, pp. 2-15, Jan. 2023. https://doi.org/10.1021/acs.iecr.2c02532

S. I. Ali, S. M. Lalji, J. Haneef, S. M. Tariq, M. Junaid, and S. M. A. Ali, 'Determination of Asphaltene Stability in Crude Oils Using a Deposit Level Test Coupled with a Spot Test: A Simple and Qualitative Approach', ACS Omega, vol. 7, no. 16, pp. 14165-14179, Apr. 2022, https://doi.org/10.1021/acsomega.2c00777

J. Hona, 'Modeling of heat and high viscous fluid distributions with variable viscosity in a permeable channel', The International Journal of Multiphysics, vol. 9, no. 4, pp. 341-360, Dec. 2015. https://doi.org/10.1260/1750-9548.9.4.341

S. Taylor and H. Chu, "Metal Ion Interactions with Crude Oil Components: Specificity of Ca2+ Binding to Naphthenic Acid at an Oil/Water Interface," Colloids and Interfaces, vol. 2, no. 3, p. 40, Sep. 2018. https://doi.org/10.3390/colloids2030040

E. (Jenny) Hristova, P. Tchoukov, and S. R. Stoyanov, 'Coalescence inhibition and agglomeration initiation near the critical dilution of asphaltene precipitation', Colloids Surf. Physicochem. Eng. Asp., vol. 629, p. 127400, Nov. 2021. https://doi.org/10.1016/j.colsurfa.2021.127400

C. M. Seifried, J. Crawshaw, and E. S. Boek, 'Kinetics of Asphaltene Aggregation in Crude Oil Studied by Confocal Laser-Scanning Microscopy', Energy Fuels, vol. 27, no. 4, pp. 1865-1872, Apr. 2013. https://doi.org/10.1021/ef301594j

M. Qasim,S. Park,JO. Kim, and Y. Moon 'Developing a model to determine the settling velocity of ballasted flocs', Journal of Environmental Chemical Engineering, vol. 8, no. 6, pp. 104515, Dec. 2020. https://doi.org/10.1016/j.jece.2020.104515

P. V. Hemmingsen, A. Silset, A. Hannisdal, and J. Sjöblom, 'Emulsions of Heavy Crude Oils. I: Influence of Viscosity, Temperature, and Dilution', J. Dispers. Sci. Technol., vol. 26, no. 5, pp. 615-627, Sep. 2005. https://doi.org/10.1081/DIS-200057671

M. Cismondi and J. Mollerup, 'Development and application of a three-parameter RK-PR equation of state', Fluid Phase Equilibria, vol. 232, no. 1-2, pp. 74-89, May 2005. https://doi.org/10.1016/j.fluid.2005.03.020

S. Paul, B. Roy, and A. Banerjee, 'Free and confined Brownian motion in viscoelastic Stokes-Oldroyd B fluids', J. Phys. Condens. Matter, vol. 30, no. 34, p. 345101, Aug. 2018, https://doi.org/10.1088/1361-648X/aad421

O. A. Alomair and A. S. Almusallam, 'Heavy Crude Oil Viscosity Reduction and the Impact of Asphaltene Precipitation', Energy Fuels, vol. 27, no. 12, pp. 7267-7276, Dec. 2013. https://doi.org/10.1021/ef4015636

Published

2023-12-02

How to Cite

Tan, J., Zhou, L., Wang, L., & Sun, Q. (2023). Experimental Study on Precipitation Regularity of Asphaltene in Underground Water-Sealed Caverns under Varying Temperature and Pressure Conditions. The International Journal of Multiphysics, 17(4), 469-486. https://doi.org/10.21152/1750-9548.17.4.469

Issue

Section

Articles